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Abstract 

This paper analyses the optimal dynamic pricing and admission control policies to maximize 

the average benefit in a Markovian queue with negative customers. The negative customers, as a 

type of job cancellation signals, are frequently employed to solve the congestion problem in the 

production system. In our model, the manager proposes a price for positive customers, and decide 

whether or not to accept the arriving negative customers in any decision epoch. Treating the 

problem as a Markov decision process, the author derived the monotonicity of the optimal pricing 

policy, proved the optimal admission policy as a threshold policy, and verified the monotonicity of 

the threshold policy in system parameters. Finally, some numerical experiments were presented to 

depict the effect of system parameters on the optimal policy and average benefit. 
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Recently, there has been a growing interest in Markovian queueing systems with negative 

customers. Unlike ordinary customers, the negative customers require no service and reduce a 

queue of ordinary customers a nonempty queueing system [1]. Over the years, queueing models 

with negative customers into have been extensively applied in performance optimization of 

production inventory systems, service organizations and computer systems. The implementation 

has aroused wide-ranging theoretical interests and given birth to diverse practical applications. In 

signal systems, negative customers are represented as inhibition signals, i.e., the instructions to 

cancel requests for resources [2,3]. In database systems, negative customers act as instructions to 

halt the operations made impossible by data locking [4-6]. In neural networks, negative and positive 

customers serve as inhibitory and excitatory signals, respectively. In inventory systems, negative 

customers stand for signals to dispose items in the serviceable inventory [7,8].  

To improve the management of queueing systems in different industries, much research has 

been done on the dynamic pricing and admission control problems. However, rarely has any scholar 

explored the dynamic control of the queues with negative customers. Considering the popularity 

of such queues, it is meaningful to study the optimal control of the queues with negative customers. 

The purpose of dynamic pricing is to enhance network manager’s ability to recover costs and make 

benefits, thus promoting capacity expansions. In optimal pricing problems, the customers are 

assumed to accept a highest consumption price, which is a random variable called the reservation 

price, and the manager is assumed to state a price at any decision epoch [9,10].  

Low [11] pioneered the study of dynamic optimal pricing problems. He derived the 

monotonicity of the optimal prices in the queue length. Son [10] examined the optimal pricing 

control problem from the perspectives of deterministic service times and side-line benefit. Yoon 

and Lewis [12] disclosed the monotonicity of a queueing system with periodically varying 

parameters. Similar monotonicity results were also derived for the make-to-stock queue model in 

a production inventory system [13]. Cil et al. [14] explored an optimal dynamic pricing problem 

for a two-class queueing system, concluding that the optimal pricing control depends on the queue 

length vector. Feinberg et al. [15] studied the optimal pricing of a GI/M/k/N queue involving 

different types of customers and holding costs. 

Being a provisioning strategy to limit the number of customers in a system, admission control 

is essential to packet-switched networks, as it is capable of relieving the traffic congestion. Heyman 

[16] was the first to study the optimal admission control problems. The early papers on admission 

control of queueing systems were summarized by Stidham [17]. Yoon and Lewis [12] opened the 

new research field of admission control in periodic nonstationary queueing systems. Son [10] 

discussed the optimal admission control of a service company with two classes of customers. Wu 
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et al. [18] investigated the multiple product admission control in semiconductor production systems 

under the constraint of process queue time (PQT). 

The structural properties of optimal pricing and admission control were widely discussed by 

Koole [19] and Lin et al. [20]. As far as we know, however, no report has been released on the 

pricing policy and admission control of queues with negative customers prior to our research. To 

make up for the gap, this paper probes into the structure of optimal pricing and admission control 

policies in a queueing system with negative customers. The goal is to find the optimal policy that 

yields the maximum average benefit over an infinite horizon. To this end, the system manager must 

weigh the penalty and holding cost against reward. Furthermore, this research is motivated by the 

vision that the wide applications of negative customers may offer a mechanism to curb the 

excessive congestion of production inventory systems. Specifically, the pricing control of positive 

customers were considered as the balk behaviour of customer demand, the negative customers were 

regarded as the disposal of items or the transition to the secondary market, and the manager decided 

whether or not to accept the negative customers, seeking to reduce the excess items in the inventory. 

The research findings help to improve the management of inventory systems, and enable the 

manager to achieve the maximum average benefit via the optimal control policy.  

The main contributions of this research are as follows. First, to the best of our knowledge, this 

research is the first to investigate the optimal pricing and admission control policies in a queueing 

system with negative customers, which fills a gap in the research into the control of queues with 

negative customers. Second, the author derived the structure of optimal policy and the monotonicity 

properties of the optimal pricing and admission threshold. Third, the results obtained in this 

research were verified by the numerical results acquired by the Howard’s iteration procedure [21]. 

The remainder of this paper is organized as follows. Section 2 formulates the model based on 

the controllable Markov decision process and derives the optimality equation; Section 3 discusses 

the structural properties of the optimal policy in the model; Section 4 examines the effect of system 

parameters on the optimal policy and average cost based on several numerical examples; Section 

5 wraps up the research with further discussions and conclusions. 

 

2. Model Description 

This research focuses on a single-server first-come, first-served (FCFS) queueing system with 

negative customers. In the system, the arrivals of positive customers and negative customers are 

two independent Poisson processes with the rate of λ+ and λ-, respectively. the service time of each 

positive customer is exponentially distributed with rate parameter μ 
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For every fixed proposed price r (r[r min, r max]), whenever a positive customer arrives, he/she 

either enters the system if his/her reservation price Q exceeds the proposed price or leaves the 

system without receiving any reward. It is assumed that Q is a random variable for which the 

distribution function and density function are denoted by W(.) and w(.), respectively, and that W
——

(r)=1-W(r). The system incurs a holding cost h per positive customer per unit of time. Whenever a 

negative customer arrives, he/she is either accepted or rejected by the manager. If the negative 

customer is accepted, a positive customer will be killed immediately, and the system will incur a 

penalty cost c for the killed customer.  

The set of decision epochs consists of the set of all arrivals, service completions, and dummy 

transitions due to normalization. In any decision epoch, the manager has to choose a proposed price 

r from the set A= [r min, r max] and decide whether or not to accept the negative customer. If the 

number of customers in the system at time t is denoted as X(t), then the system evolves as a 

continuous-time Markov chain {X(t), t≥0} under any fixed control policy π. It is clear that the 

system state space is E= {0, 1, 2, …}. Due to the Markovian property, the optimal policy depends 

only on the current state. 

The manager is responsible for finding the optimal policy to maximize the long-term average 

benefit based on the number of customers in the system. Treating the problem as a Markov decision 

process, the author built a discrete-time equivalent of the original queueing system through 

normalization. Without loss of generality, it is assumed that that λ++λ-+μ=1. Thus, the total expected 

benefit can be obtained as: 

 

 

 

where π is the policy; x is the initial state; n is the number of horizons; Eπ
x is the expectation on 

the probability measure determined by the policy and the initial state; M(t) and N(t) are the number 

of positive customer and negative customers who have entered the system at time t, respectively; 

r(t) is the proposed price at time t. The expectation must exist because the rewards are bounded and 

non-negative. 

Under the assumption that λ+W
——

(rmax)≤μ, the resulting system is a stable queueing system of 

finite average queue length and finite average benefit. Assuming that the process {X(t), t≥0} with 

state space E is an irreducible, positive recurrent Markov process at each fixed stationary policy π, 
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the long-term average benefit of the ergodic Markov process under the policy π can be written as 

below in light of Tijms [22]. 

 

 

where pi(π) is a stationary probability of the system under policy π; r (x, a) is the expected benefit 

of the system in state x and action a. Let ∏ be the set of all admission policies. The goal is to find 

the optimal policy π* that maximizes the long-term average benefit: 

 

 

 

To find such a policy, a real-valued function v(x) is defined in the state space. The relative 

value function is regarded as the asymptotic difference in total costs if the process starts in state x 

instead of some reference states. According to Puterman [21], the optimal policy π* and the optimal 

average benefit g are the solutions of the optimality equation below: 

 

                                                             (1) 

 

where T is the dynamic programming operator acting on v. The relevant operators are defined as: 

 

 

 

 

The first operator TP v(x) simulates the admission control of the arriving positive customers 

based on optimal pricing; the second operator TA v(x) simulates the admission control of arriving 

negative customers based on value variation. 

The first step to examine the properties of the optimal policy is to investigate the properties of 

the relative value function. The key lies in the analysis of the operators TP and TA. The properties 

of the relative value function v(x) are defined as follows: 

 

Decreasing:    , 

Concavity: , 

Convexity: . 
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Referring to Cil et al. [9], it is assumed that a function v(x) has a certain property ϕ preserved 

by operator T if the property also belongs to Tv(x). Through the deduction on n in v(x), it is possible 

to acquire the properties of the operators TP and TA in our model that preserve the desired properties 

(decreasing, concavity, convexity) for the function v(x). 

3. Structure of the Optimal Control Policy 

This section attempts to derive the optimal policy. The properties of the optimal policy helps 

to reduce the solution search space, and ease the computing load in the search of the optimal policy.  

The optimality equation (2.1) should be solved before exploring the optimal policy. Whereas 

it is hard to solve the equation analytically, the vn+1=Tvn is recursively defined for a random v0 

based on the system state transition rate, the stochastic dynamic programming, and the induction 

method. It is known that the actions converge to the optimal policy as n→∞. The existence and 

convergence of the solutions and optimal policy have been detailed by Aviv and Federgruen [23] 

and Sennott [24]. The backward recursion equation is expressed as: 

 

                                (2) 

 

The main properties of the operators in the system can be summarized by the following lemma 

(the proof is given in the Appendix). 

Lemma 3.1 For the relative value function v(x) in the model, we have: 

(1) The operator TP preserves the properties: Decreasing, Concavity, Convexity, 

(2) The operator TA preserves the properties: Decreasing, Concavity, Convexity. 

According to the backward recursion equation (3.1), the following properties of the relative 

value function v(x) can be obtained based on the above properties of the operators and the induction 

method: 

 

, . 

 

On the basis of the structure properties of the relative value function v(x), the structure of the 

optimal pricing policy is expressed in the following theorem. Please refer to Çil, E.B [9] for the 

proof of the theorem. 

Theorem 3.1. The optimal pricing control policy has the following properties: 

(1) If W
——

(r)/(r W(r)) is strictly decreasing in r[r min, r max], then the optimal pricing is unique; 
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(2) If the optimal pricing is non-decreasing in xE, then r*(x)≤r*(x+1) for xE. 

Next, the structure of the optimal admission policy was discussed and some conditions were 

given to ensure the simplicity of the policy in the model. As mentioned above, the properties of the 

optimal policy helps to reduce the solution search space, and ease the computing load in the search 

of the optimal policy. Specifically, the structure of the optimal policy was converted as the 

properties of the optimal value function and the optimality equation. Following the optimality 

equation, the operator T A  can be rewritten as: 

 

 

 

where H(x-1) =v(x-1)-v(x)-c. 

From the above equations, it can be seen that the properties of H(x) should be examined before 

deriving the structure of the optimal admission policy. For this purpose, the author presented the 

following lemma (the proof is given in the Appendix). 

Lemma 3.2. For the admission control problem in the present model, we have: 

(1) The function H(x) is increasing for all xE. 

(2) If the condition h/μ ≥c holds, then H(0) ≥0.  

The admission control problem was analysed in two aspects. First, the acceptance of an arriving 

negative customer will incur a penalty cost and the removal of a positive customer. Second, the 

rejection of an arriving negative customer will incur a holding cost to the positive customer. Hence, 

the system manager must weigh the penalty and holding cost against reward. This means the 

decision depends on the number of customers in the system and the parameters h and c . 

Theorem 3.2. The optimal admission policy is a threshold policy, that is, the negative 

customer should be rejected if x<N*and be accepted if otherwise; N*= min {x: H(x)≥0}; N*=0 if 

the condition h/μ ≥c holds. 

Proof Since the function H(x) is increasing for all xE (Lemma 3.2 (1)), there must exist an 

optimal threshold policy for the admission control problem. Concretely, there exists an N* such 

that H(x)≤0 for all states x ≤ N*and H(x)≥0 for all states. Moreover, it states that the negative 

customer should be rejected if x ≤ N*and be accepted if otherwise; By the definition of the 

admission operator TA, the threshold parameter is N*=min {x: H(x)≥0}; N*=0 if the condition h/μ 

≥c holds. From Lemma 3.2 (2), it is obtained that H(x)≥0 for all states xE. Hence, the optimal 

admission policy is a pure reception policy, i.e., the negative customer should be accepted for all x

E. 
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Intuitively, it is learned that the minimum holding cost is h/μ for a positive customer. If the 

condition h/μ ≥c holds, the minimum holding cost for a positive customer must surpass the penalty 

cost. To remove the positive customer from the system, the manager has to accept the negative 

customer. However, if the condition H(0) ≤0 holds, the manager should decide whether or not to 

accept the negative customer based on the number of positive customers in the system. Therefore, 

there exists a threshold N*>0 such that the negative customers should be rejected for the states x 

≥N*. 

Next, the monotonicity properties of the two thresholds m and n were discussed with respect 

to various system parameters. Referring to the method in Benjaafar et al. [25] and C¸il et al. [14], 

the author compared the optimal value functions of two systems which are identical except for the 

value of one parameter, denoted as q. The optimal admission thresholds and optimal value function 

corresponding to q are represented by Nq and vq(x), respectively, where q{λ+ , λ-, c, h}. 

In order to derive the monotonicity properties of the two thresholds, the properties of the 

optimal value function vq(x) in the two systems were examined in light of Koole [19]. To make the 

two systems comparable, the normalization rate, depending on {λ+, λ-, μ}, must be constant. The 

time was rescaled by a normalization rate τ sufficiently greater than the λ + μ + ξ so that q and q + 

ε share the same normalization rate. To maintain a constant normalization rate, the fictitious event 

in the two system is τ-q and τ-q-ε, respectively. For instance, if q=μ, the optimality recursion 

equations of the system with parameter μ and the system with μ + ε are respectively expressed as: 

 

          (3) 

 

      (4) 

 

where TP and TA are defined in the previous section. By this method, the following lemma is arrived 

at (the proof is given in the Appendix). 

Lemma 3.3. For the optimal value function vq(x) of the two systems with different parameters 

q, we have: 

(1) ,  , 

(2) ,  ,  

wh er e ∆ v q (x )= v q (x -1 ) - v q (x )  a n d   ε≥0 .  
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Based on the above properties of optimal value function, the structure of the optimal policy 

was obtained by analysing the effect of various system parameters on the thresholds. The results 

are summarized in the following theorem.  

Theorem 3.3. In the system control problems, the optimal admission threshold N* is non-

decreasing in λ-, c and λ+，h. 

Proof In Theorem 3.2, the admission threshold is defined as N*=min {x: H(x)≥0}. According 

to the comparison above and Lemma 3.3 (1), it is known that ∆vλ
+

+ε(x)≥∆vλ
+(x) and ∆vh+ε 

(x)≥∆vh(x). Hence, the admission threshold N* is non-increasing in λ+, h. According to Lemma 

3.3 (2), ∆vλ
-
+ε(x)≥∆vλ

-(x) and ∆vc+ε(x)≥∆vc(x), indicating that the admission threshold N* is non-

decreasing in λ -, c. 

 

4. Numerical Examples 

Several numerical examples were developed similar to those in [9]. It is assumed that μ=1 and 

the proposed price is uniformly distributed in the interval [2, 14]. Whereas Howard’s policy 

iteration algorithm is an effective numerical calculation tool for the Markov decision problem, the 

algorithm was modified [21] to handle the numerical examples. The examples were designed to 

reflect the effect of system state transition on the optimal pricing r*(x), verify the structure of the 

optimal admission threshold and average benefit obtained in Section 3, and demonstrate the 

response of the optimal policy and average benefit to the system parameters. The observations are 

presented in the table and figures below. 

 

Tab.1. Optimal Pricing vs. x for λ+=0.8, λ−=0.3, h=1, c=3 

X r∗(x) x r∗(x) x r∗(x) x r∗(x) x r∗(x) 

0 1.00 6 1.28 12 2.93 18 5.25 24 6.00 

1 1.00 7 1.50 13 3.28 19 5.60 25 6.00 

2 1.12 8 1.72 14 3.65 20 5.85 26 6.00 

3 1.18 9 2.05 15 4.02 21 6.00 27 6.00 

4 1.20 10 2.35 16 4.32 22 6.00 28 6.00 

5 1.24 11 2.62 17 4.85 23 6.00 29 6.00 
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Fig.1. Optimal Threshold and Average Benefit vs. λ+ for λ-=0.3, h-=1, c=3 

 

 

 
Fig.2. Optimal Threshold and Average Benefit vs. λ- for λ+=0.6, h-=1, c=3 

 



213 

 

 
Fig.3. Optimal Threshold and Average Benefit vs. h for λ+=0.7, λ- =0.5, c=3 

 

 
Fig.4. Optimal Threshold and Average Benefit vs. c for λ+=0.8, λ- =0.3, h=1 

Table 1 depicts the relationship between the optimal pricing and system state. As shown in the 

table, the optimal pricing r*(x) increases with the number of customers in the system x. As the 

number grows within certain ranges, the optimal pricing will reach the maximum pricing r*(x)=6 

and remain the same. The phenomena are consistent with the reality and easy to explain. For 

example, when the number of customers becomes sufficiently large in the system, the holding cost 

will grow, forcing the manager to propose the maximum pricing and reject the arriving customers. 

Figures 1~4 present the numerical results on the response of the optimal policy and average 

benefit to the system parameters λ+, λ-, h and c. As shown in Figure 1, the optimal threshold 

decreases with the increase of λ+, while the average benefit first increases and then decreases with 

the increase of λ+. The increase of the average benefit is attributable to the system welfare brought 

by the arriving positive customers, while the decrease of the average benefit is resulted from the 

growing number of positive customers, and the ensuing growth in holding cost in a certain interval. 
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Figure 2 shows the effect of rate λ-on the optimal threshold and average benefit. It can be seen that 

the optimal threshold increases with parameter λ-, and the average benefits grows with ξ but at a 

slower rate. As can be seen from Figures 3 and 4, the optimal threshold decreases with the increase 

of h, while the average benefit falls with the increase of either h or c. Moreover, all the values of 

the optimal thresholds exhibit a staircase-like monotonous pattern, indicating that the optimal 

threshold is not affected by the minor changes of system parameters. 

 

Conclusion 

This paper digs into the optimal dynamic pricing and admission control policies to maximize 

the average benefit in a Markovian queue with negative customers. The negative customers, as a 

type of item removal signals, are frequently employed to solve the congestion problem in the 

production inventory system. Treating the problem as a Markov decision process, the author 

derived the monotonicity of the optimal pricing policy, proved the optimal admission policy as a 

threshold policy after analysing the properties of the value function, and discovered the 

monotonicity of the optimal thresholds to some system parameters through comparisons. Moreover, 

the Howard’s iteration algorithm was adopted for the numerical experiments, which were designed 

to reveal the behaviours of optimal policies were studied under different values of system 

parameters. The proposed method is applicable to a wide range of models, including the optimal 

maintenance and production policies in the production system, and the optimal routing, scheduling 

and production policies in the management system. 

Further investigation is needed to apply the results to simulate more complex systems. For example, 

the proposed model could be extended to study the optimal control problem in the queues with disaster, 

or implemented in systems of which the service time obeys the general distribution of the embedded 

Markov process and semi-Markov process. Furthermore, the optimal control of the model may be 

combined with the uncertainties to provide more accurate information to the manager. Such uncertainties 

include randomness and fuzziness, which are commonplace in actual product inventory systems. 

 

Appendix 

The proof of Lemma 3.1 (1) 

Proof. To prove the decreasing property of operator TP, let r* be the optimal price for the state x+1. 

Then we show that pricing operator TP preserves the decreasing property of v(x)in x. From the 

definition of the pricing operator TP, we get 
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The first inequality follows by taking a potentially suboptimal action in state x and the second 

inequality is based on the decreasing property of v(x) in x. The equality follows by the definition 

of r*. Hence, we have TPv(x)≥TPv(x+1).  

To prove the concavity of operator TP, let r1, r2 and r3 be the optimal prices for the states x, x+1 

and x+2. Then we show that pricing operator TP preserves the concavity of v(x) in x. From the 

definition of the pricing operator TP, we get 

 

 

 

The first equality is based on the definition of the pricing operator and the inequality follows 

by taking a potentially suboptimal action in state x+1. 

 

 

The first equality is based on the definition of the pricing operator and the inequality follows 

by taking a potentially suboptimal action in state x+1 and the second equality is based on arranging 

the terms. Because of the concavity property of v(x), we have 2v(x)-v(x+1)-v(x+2)≥0 and 2v(x+1)-

v(x+2)-v(x+3)≥0. Hence, we get 2TPv(x)-TPv(x+1)-TPv(x+2) ≥0. 

To prove the convexity of operator TP, let be the optimal price for the state x. Then we show 

that TP preserves the convexity of v(x) in x. From the definition of TP, we get 
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The first inequality follows by taking a potentially suboptimal action in states x-1 and x+1. 

The equality is based on arranging the terms and the second inequality is based on the assumption. 

The proof of Lemma 3.1 (2) 

Proof. To prove the decreasing property of operatorTA, we can get it from the decreasing 

property of v(x) and the definition of the admission operator TA. We omit the details here. To prove 

the concavity of operator TA, from the definition of operator TA, we get 

 

 

 

Because of the concavity property of v(x), the above equation has four cases: 

 

 

 

Due to the concavity of v(x), the cases (a) and (b) hold. Since we have v(x-1)-c≥v(x) in case 

(c) and v(x-1)-c≥v(x) in case (d), the cases (c) and (d) hold. Therefore we get 2TA v(x)- TA v(x+1)- 

TA v(x-1) ≥0, i.e., the operator TA preserves the concavity of v(x). 

The proof of Lemma 3.2 

Proof. To prove Lemma 3.2 (1), from Lemma 3.1, we know that 2v(x)-v(x+1)-v(x-1)≥0, which 

implies that the function H(x) is increasing for all xE. 

To prove Lemma 3.2 (2), the proof is by induction on n in vn(x). Define v0(x)=-cx for all states 

xE. This function satisfies the property vn(0)-vn(1)-c≥0. Now, we assume vn(0)-vn(1)-c≥0.One 

has to prove that vn+1(x)satisfies the property vn+1(0)-vn+1(1)-c≥0 as well. Let r0, r1 be the optimal 

prices for the state 0 and 1, respectively in the model. Based on the equation (3.1), we have: 
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Rearranging the terms above, we get 

 

 

 

The first in equality follows by taking a potentially suboptimal action in state x and the second 

inequality based on the concavity property of v(x), i.e, vn(1)-vn(2) ≥vn(0)-vn(1). The third inequality 

follows by the assumption vn(0)-vn(1)-c≥0 and the last inequality based on the conditions h/μ ≥c 

and λ++λ-+μ=1. Therefore, we have v(0)-v(1)-c≥0. 

The proof of Lemma 3.3 

Proof. From the definition of the operators TP and TA, we get that the first order differences 

for the operators can be written as follows: 

 

. 

 

In order to prove the properties, we mainly use the fixed point theorem and the iterative 

induction method. As the properties have the similar structure, we just consider the case q=λ+ and 

the other cases can be proved in this way. We first show that the operators TP and TA preserve the 

property∆vλ
+

+ε(x)≥∆vλ
+(x).i.e ∆TPvλ

+
+ε(x)≥∆TPvλ

+(x), ∆TAvλ
+

+ε(x)≥∆TAvλ
+(x). 

The proof of the result ∆TAvλ
+

+ε(x) ≥ ∆TAvλ
+(x) can be found in [12]. Next we will give the 

proof of the result ∆TPvλ
+

+ε(x)≥∆TPvλ
+(x). Let r1 and r2 be the optimal prices for the states x in the 

model with λ++ε and x-1 in the model with λ+ respectively. Then we show that pricing operator TP 

preserves the property∆vλ
+

+ε(x)≥∆vλ
+(x). From the definition of the pricing operator TP ,we get 
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While the coefficient of the operators TP, TA and the uniformization rate are dependent on the 

parameter q when q{λ+, λ-}.We need to show the following property∆TP vλ
+ (x)-∆vλ

+(x)≥0.. Let r 

be the optimal price for the state x. From the definition of the operator TP and the concavity property 

∆v(x)≥∆v(x-1), we have 

 

 

 

Based on these properties above, we have the following inequality: 

 

 

Therefore, we have ∆vλ
+

+ε(x)≤∆vλ
+(x). Meanwhile, we can get the result ∆vh+ε(x)≤∆vh(x), ∆vλ

-

+ε(x)≤∆vλ
-(x). and ∆vc+ε(x)≤∆vc(x) in the same way. 
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